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for any crystallographic orbit that refers to a compre- 
hensive complex of that lattice complex if, in addi- 
tion, it may be described by the same coordinate 
triplets as an orbit of the regarded lattice complex. 

The authors thank the unknown referee of this 
paper for his helpful and encouraging comments. 
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Abstract 

A least-squares refinement program R E S T R A I N  has 
been developed, which is capable of refining 
macromolecular structures using structure ampli- 
tudes, phases from isomorphous replacement or 
anomalous scattering and pseudo-energy restraints. 
In addition to positional parameters and isotropic 
temperature factors, anisotropic mean-square dis- 
placements may be refined either as individual atomic 
U tensors or as TLS tensors applied to groups of 
atoms. Anharmonic effects may be handled by coup- 
ling together occupancies to enable the electron 
density of an atomic group to be distributed over 
more'than one subsite. A novel way of restraining 
groups of atoms to be planar has been developed that 
does not require dummy atoms and does not restrain 
the plane to lie in its current orientation. 

Introduction 

Techniques for the refinement of macromolecular 
structures from diffraction data using geometrical 

* To whom all correspondence should be addressed. 
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restraints are now well established. Before 1976 most 
refinements of protein structures were undertaken 
using difference Fourier methods. Several techniques 
for automat ing this approach were developed 
(Diamond, 1971 ; Freer, Alden, Carter & Kraut, 1975) 
and real-space refinement has recently been applied 
to the protein component of a virus (Jones & Liljas, 
1984). 

Reciprocal-space least-squares refinement tech- 
niques followed later and imposed geometrical 
restraints on the positional parameters in terms of 
bond lengths, bond angles and non-bonded interac- 
tions. Systems that have minimized functions that 
contain both structure amplitude and restraint terms 
(Konnert, 1976; Sussman, Holbrook, Church & Kim, 
1977; Moss & Morffew, 1982) have been widely used 
in the refinement of protein and RNA structures (see, 
for example, Borkakoti, Palmer, Haneef & Moss, 
1983; Sielecki, Hendrickson, Broughton, Delbaere, 
Bryer & James, 1979; Girling, Houston, Schmidt & 
Amma, 1980). Other systems, which impose the 
restraints in a separate least-squares or energy- 
minimization step outside the structure-amplitude 
refinement (Agarwal, 1978; Jack & Levitt, 1978), have 
also been successfully employed (Baker, 1980). 

(~ 1985 International Union of Crystallography 
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A major problem affecting the least-squares refine- 
ment of macromolecules is the heavy demand on 
computer time. Several ways of reducing this problem 
may be adopted. Firstly, the use of restraints enables 
the refinement to proceed satisfactorily with a normal 
matrix, which is diagonal or block-diagonal with 
respect to the structure-factor derivatives. Secondly, 
advantage may be taken of the increasing availability 
of vector/array processors. These are found both as 
a part of the central processor of a scalar machine 
such as the Cray-1, Cyber 205 or Norsk 570 or as a 
peripheral unit such as the floating-point array pro- 
cessors that may be attached to a general-purpose 
machine such as a VAX 11/780 (Furey, Wang & Sax, 
1982). Thirdly, the structure factors and their deriva- 
tives may be supplied by a fast Fourier transform 
algorithm. Programs using this approach have been 
written by Agarwal (1978) and Jack & Levitt (1978). 

The desire to relate structure to function in 
macromolecular studies often requires that the 
maximum amount of dynamic information should be 
derived from a structure refinement. The Bragg reflec- 
tions from a crystal are determined by the time- and 
lattice-averaged structure, but information about the 
correlation of atomic motions is lost in the thermal 
or disorder diffuse scattering. Any a priori assump- 
tions that can be made about these correlations can 
be employed to restrain atomic displacement par- 
ameters and enable more accurate models of these 
displacements to be used with macromolecular 
diffraction data of limited resolution. Konnert & 
Hendrickson (1980) have described a method of 
anisotropic refinement that is based on the small 
magnitude of the relative displacements of bonded 
atoms in the bond direction. The purpose of the 
present paper is to describe a program RESTRAIN, 
which takes advantage of the vector hardware of the 
Cray-1 computer and offers various facilities for the 
modelling of anisotropic and anharmonic atomic dis- 
placements. 

The function minimized 

The refinement of a macromolecular structure is 
usually characterized by a poor observation-to-par- 
ameter ratio. This leads to higher thermal or disorder 
diffuse scattering and weaker Bragg reflections, which 
only extend to a limited resolution. The number of 
structure amplitudes from a protein crystal becomes 
equal to the number of positional parameters when 
a resolution between 3.2 and 2 . 5 ~  is attained, 
depending on the solvent content of the crystal. 

A satisfactory refinement of a macromolecule must 
therefore call upon sources of information other than 
structure amplitude data otherwise unacceptably 
large random errors will occur in the refined par- 
ameters. Phases derived from isomorphous replace- 
ment of anomalous scattering can be employed to 

restrain the model but due to the large errors usually 
present in such phase estimates, this strategy may not 
contribute much to the later stages of refinement. 
Target values for stereochemical or pseudo-energy 
restraints are known with higher precision and con- 
tribute most significantly to the function minimized. 
In RESTRAIN this function is 

M=E w A l f  ol - OlFcl)= + E w,,( ~,o - ~,c) = 

+Y. Wa(d,-d,)2+~, Wb(bo-bmin) 2 

+X wolvl (for bo < brain), 

where Wr=structure-amplitude weighting coeffi- 
cients, Fo [= observed structure amplitudes, G = scale 
factor, IFol =calculated structure amplitudes, Wp = 
phase weighting coefficients, ~oo = observed phases, 
~o~ = calculated phases, Wa = restrained distance 
weighting coefficients, dt =target interatomic dis- 
tances, d~ =calculated interatomic distances, bo = 
observed distance between two non-bonded atoms, 
bmi,=minimum distance allowed for such atoms, 
Wb = weighting coefficients for non-bonded interac- 
tions, Vl=determinant of the product-moment 
matrix of a planar group of atoms, Wv = weighting 
coefficients for planarity restraints. 

M may be written as a function of three terms: 

M = A + B + C ,  (1) 

where 

a = ~  (IFol- OIFcl) 2 

is the term conventionally found in crystallographic 
least-squares refinement procedures. The weight Wy 
given to the individual squared terms is calculated 
from one of a choice of two formulae. One is a 
modification of a formula due to Cruickshank (1961): 

IVy= a(sin ~o/X Yl(c+lfol+ dlfol2); 

and the second utilizes the standard deviations ~r (lEo l) 
that are derived from the intensity measurements: 

Wf = a(sin tp/A)b/[~=(IFo I) + clFol2]. 
The values of a, b, c and d may be supplied by the 
program user. 

The term B in (1) is given by 

B = E  Wp(~0o- ~0~) 2, 

where ~o is the estimate of the phase from isomor- 
phous and anomalous data, ~0, is the phase calculated 
from the model. Phase data are weighted by the term 

w,, = a m ( 1 8 o -  I~,o - ~,~l) b, 

where a and b are coefficients that may be supplied 
by the user and m is the figure of merit. The phase 
difference occurring in Wp allows for the cyclic nature 
of the phase data, which implies that a calculated 
phase that is 180 ° from its observed value cannot 
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contribute to the refinement. Hence centric data make 
no contribution. Correct weighting of term B relative 
to other terms should enable both A and B to decrease 
during refinement. Most of the calculations required 
for phases and their derivatives are also needed in 
the structure-amplitude refinement and thus the com- 
puter time increases by about 15% when each reflec- 
tion contributes phase information for inclusion in 
B. The relevant algebraic expressions are given in 
Appendix I.* 

The third term in (1) represents pseudo-potential 
energy terms: 

C = E  Wd(d,--dc)2+E Wb(bo-bm~n) 2 

+E wolvl (for bo < bmin). 
The interatomic distance terms correspond to the 
central force-field approximation in vibrational spec- 
troscopy but the force constants are crudely approxi- 
mated by assuming the same value for all bonded 
distances, another value for atoms separated by two 
bonds and a third value for pairs separated by three 
bonds. The second term in C prevents undesirably 
close contacts occurring during refinement between 
atoms separated by more than three bonds. The chi- 
rality of specified tetrahedra of atoms may be 
restrained by giving equal weights to the restraints 
along the tetrahedral edges. Restraint specifications 
are supplied in a dictionary file of residues but supple- 
mentary restraints may be given in the steering data. 

RESTRAIN calculates values for weighting 
coefficients that would be required to produce root- 
mean-square deviations from target distances com- 
parable with the dispersion of these values found in 
small-molecule structures. Use of these weights is 
suitable in the final cycles of refinement while softer 
restraints may assist convergence at earlier stages. 
Application of harder restraints may severely reduce 
the rate of convergence. 

When a libration tensor L (see below) is refined 
the relevant interatomic distances (dc) are calculated 
using the expression 

dc = do{ 1 + ½[tr (L) - n'Ln]}, 

which includes a libration correction. The uncorrec- 
ted distance is do, tr denotes the trace operation, n is 
a column matrix denoting a unit vector along the 
interatomic direction and n' denotes its transpose. A 
root-mean-square libration of 7 ° about a direction 
perpendicular to a bond gives a correction of 0.01/~ 
to the calculated distance. 

The last term in C is a planarity restraint. For 
planar or pseudo-planar groups such as the phenyl 

* Appendices I and III have been deposited with the British 
Library Lending Division as Supplementary Publication No. SUP 
42182 (6 pp.). Copies may be obtained through The Executive 
Secretary, International Union of Crystallography, 5 Abbey 
Square, Chester CH1 2HU, England. 

or imidazole rings of peptide side chains, the central 
force field is inadequate for maintaining the geometry 
imposed by 7r-electron delocalization. In spectro- 
scopic calculations force fields have be introduced 
with a high proportion of off-diagonal terms in order 
to deal with such situations (Califano, 1976). Planar 
restraints in geometric least squares have been applied 
by positioning a dummy atom at some distance from 
the plane (Dodson, Isaacs & Rollett, 1976) or by 
minimizing the current least-squares best plane (Hen- 
drickson & Konnert, 1980). Both these techniques not 
only restrain the atoms to be planar but also restrain 
them to the current least-squares plane. In a refine- 
ment where the orientation of the plane is implicitly 
refined a method is desirable that does not dampen 
changes in orientation produced by other terms in 
M. In Appendix II it is shown that the necessary and 
sufficient condition for a set of atoms to be planar is 
that the determinant of the matrix V be zero, where 
V is the product-moment matrix 

Ex,  x, Ex,  Y, Ex,  z,] 
y. Y,X, z Y, Y, zY, Z,]. 
Ez, x, Ez, r, Ez, z,] 

The summations in this matrix are over all the atoms 
in the plane and the coordinates are Cartesian with 
respect to the centroid of the planar group as origin. 
This determinant is not a quadratic form and also 
includes many off-diagonal terms. The pseudo-force 
constant Wv associated with this determinant may be 
chosen to yield root-mean-square deviations from the 
refined least-squares plane of less than 0.02/~. Fig. 
1 illustrates the use of planarity restraints applied in 
this manner to a tyrosine residue in the refinement 
of ribonuclease A (Borkakoti, Moss & Palmer, 1982). 

Refinement parameters 

The function M may be minimized with respect to 
some or all of the following parameters: 

(a) overall scale factor (G); 
(b) overall atomic displacement parameter (U);  
(c) atomic coordinates (xi, yj and zj); 
(d) individual isotropic atomic displacement par- 

ameters ( U i); 
(e) individual atomic anisotropic displacement 

parameters (U~'"); 
(f) rigid-body displacement parameters, including 

a translation tensor (Ti), a libration tensor (Li) and 
a screw rotation tensor (Si) of the ith rigid group 
(Ibers & Hamilton, 1974); 

(g) atomic occupancy factors (nj). 
The structure-factor expression employed is 

F( hkl) = G ~ njfjRjSj, 
j=l 
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Rj = exp [2¢ri( hxj + kyj + Izj)] 

Sj = exp [-8w2 U sin z 0 / a  2] 

or exp [-8w2Uj sin 20/X 2] 

or exp [-2rrU(hUU)~ + kzU22 + IEU 33 

+ 2kIU 23 + 21hU} 1 + 2hkU~2)]. 

In the above formulation, reciprocal-lattice coor- 
dinates (h, k,/) ,  atomic coordinates (x, y, z), and the 
U tensor components are all with respect to an 
orthonormal basis. The atomic form factor is denoted 
byf .  

Individual atomic U tensors may be refined or 
rigid-body anisotropic refinement of atomic groups 
may be undertaken by refining the rigid-body dis- 
placement tensors T, L and S, in which case the U 
tensor components of the j th  atom in the ith group 
are given by the equation 

Uj= Ti + AjLiAT + AjSi +S  ri Aj 

I~J73 

79 

:~t 7a 

73 

I)Z 73 

73 

~ 7 3  

77 75 

(173 

~1 73 

~279 

t 0 zj -01 ) A j =  - z j  0 . 
yj -x j  

where 

~,ra 73 
73 

(a) (b) 
Fig. 1. Effect of applying planarity restraints on the side group 

Tyr 73 of bovine pancreatic ribonuelease A. (a) Planarity 
restrained by distance restraints only. (b) Planarity restraints 
implemented as described in the text. 
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Several subsites cannot be adequately treated by 
anisotropic refinement, which can only model uni- 
modal distributions of atomic positions. R E S T R A I N  
has facilities for coupling together occupancies so 
that their sum is unity. Fig. 2 shows two sites of 
histidine 119 in bovine pancreatic ribonuclease that 
were refined in this way. 

Formation of normal equations 

R E S T R A I N  sets up and solves an approximation to 
least-squares normal equations. A sketch of the rel- 
evant theory of function minimization is given in 
Appendix I.* The equations may be written as 

N ( p ) S p = [ K ( p ) + A I ] S p = - g ( p ) ,  where A--0. 

The matrix K is an approximation to a normal matrix 
where contributions to off-diagonal terms are 
included for the energy restraints and 3 x 3 blocks are 
used for the contributions from the positional par- 
ameters of the atoms. All other off-diagonal terms are 
taken as zero. The correlation between the overall 
scale factor and the displacement parameters is taken 
into account in the way described by Rollett (1965). 
The column vector p describes the current parameter 
set and /~p represents the parameter increments 
obtained by solving the normal equations. The vector 
g(p) is V M(p),  the gradient vector of M at p. I is a 
unit matrix and A is a fraction of the mean diagonal 
element of K 

A=m(Kii(p))i .  

The parameter m is chosen by the user but can also 
be modified by the program. This parameter is useful 
in situations where the normal equations are ill-condi- 
tioned. This may often happen in macromolecular 
refinement. Firstly, if a refinement is being undertaken 
with little or no diffraction data as when geometric 
regularization is carded out then M may only 
possess a weak minimum, i.e. the minimum is not a 
zero-dimensional subspace of parameter space. 
Secondly, if atoms are present in the refinement with 
high displacement parameters or low occupancies 
then small diagonal elements will appear in the nor- 
mal matrix. This commonly occurs with solvent 
molecules. The parameter rn is also useful when a 
refinement is undertaken with atomic positions with 
relatively large errors and M maydepar t  significantly 
from quadratic curvature in the neighbourhood of p. 
In these cases values of m in the range 0 <  m <0.5  
produce equations that are well conditioned and give 
a solution vector biased towards the direction of 

steepest descent. In a recent refinement of a B-DNA 
hexamer using interproton distances from N M R  spec- 
troscopy and no diffraction data (Clore, Gronenborn, 

* See deposition footnote. 
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Table 1. Comparison of computer processing times 
for various stages of refinement with and without 

vectorization 

Timings on the Cray-lS for the general structure-factor subroutine in 
RESTRAIN with and without vectorization. Timings are also given for the 
same routine after various modifications to vectorize the inner DO loops. 
Data refer to avian pancreatic polypeptide (aPP), which has 36 residues 
(293 non-hydrogen atoms + 38 water molecules), space group C2 and 17027 
reflections (Glover et aL, 1983). 

Atomic Vectorization Look-up Internal Time 
displacements on/off function function (s) 

(i) Isotropie off s in / eos /exp  106 
(ii) Isotropic on s in /cos /exp  32.6 

(iii) Isotropie on sin/cos exp 30.9 
(iv) Isotropic on s in /cos /exp  22.6 
(v) Anisotropic on s in / cos / exp  24.4 

The most significant improvements occur owing to the use of the Cray-1S 
trigonometric functions to vectorize the inner DO loops [compare (iii) with 
(iv)]. Other changes, such as using the Cray-lS $SUM and Vector/Merge 
functions do not make significant differences in this routine. The final timing 
for this routine after optimization is 19.5 s for the isotropic calculation. 

Central processor times spent on different parts of a least-squares refinement 
calculation on the Cray-lS computer with and without using the vector 
facilities. Data are taken from the refinement of avian pancreatic polypeptide 
(Glover et aL, 1983). 

V= on: vectorization switched on; V= off: vectorization switched off. 
Time (s) Time per unit calculation 

Function V = on V = off for V = on 
Structure-factor 22.56 105.89 2 x 10 -6 s a t o m - t  reflection- t 

calculation (general equivalent position) -1 
Assemble normal  6.12 35.43 1 × 10 -6 S atom - t  reflection -1 

equations 
Geometry restraints 0-81 0.81 2 x 10 -3 s atom -1 
Solution of  normal  0.71 0.78 2 × 10 -3 S a tom-  t 

equations by 
Gauss-Seidel  method 

Moss & Tickle, 1985) values of m greater than 2 were 
successfully used to combat severe ill conditioning. 
In order to assess the condition of the normal matrix 
and the relation between the directions of the solution 
vector and the gradient vector, RESTRAIN computes 
a statistic p, which measures the condition of the 
matrix (see Appendix III)* and also the scalar 

~P. g(P)/II ~Pll IIg(P)ll. 
If this quantity is close to zero the solution vector is 
approximately orthogonal to the steepest-descent vec- 
tor and progress of the refinement may be improved 
by increasing m. The use of normal equations 
modified by the term AI is sometimes known as the 
Levenberg-Marquardt method and its use in patho- 
logical cases has been widely discussed (see for 
example Wolfe, 1978). 

Solution of normal equations 

In order to solve the modified normal equations 

N(p) 8 p = - g ( p )  

the Gauss-Seidel method is employed. A brief 
description of the method is given in Appendix III. 

* A p p e n d i x  I I I  has  been  deposi ted .  See deposi t ion  footnote .  

Table 2. Analysis of the Gauss-Seidel solution of the 
normal equations; a cycle of glucagon refinement 

8p. g/(llSpll Ilgll) = 0.824; p = 4.46; i = i terat ion n u m b e r ;  8p '  = 
solut ion vec tor  at i terat ion i; q i ( m e a n ) = m e a n  o f  e lements  o f  
(Sp i - 8pi -~) ;  q i (max. )  = m a x i m u m  element  o f  (Sp i - 8p~-~); g = 
gradient  vec tor ;  p is defined in A p p e n d i x  I I I .  

i q ' ( m e a n )  q i (max. )  lisp' - 8p'-~ll/II~p'll 
4 0"0034 0"0080 0"3143 
5 0-0016 0"0058 0-1401 
6 0"0008 0.0044 0.0755 
7 0"0005 0"0037 0"0459 
8 0"0003 0"0030 0"0303 
9 0"0002 0-0034 0"0211 

10 0"0001 0"0027 0"0152 

This method has been used for solving the large linear 
systems of equations that arise from the solution of 
partial differential equations. It is a stationary itera- 
tive method, which is extremely simple to program 
and requires only that one normal equation be held 
in central memory at any given time. As the matrix 
N(p) is sparse, each row is held in an array where 
only non-zero elements are stored. A second array 
contains the column numbers of the corresponding 
elements in the first array. These arrays are held on 
a scratch file. In the Gauss-Seidel method the rows 
of N(p) are repeatedly multiplied by a column vector 
whose elements gradually approximate to the solution 
of the equations. Because of the use of the auxiliary 
array to index the rows, the DO loops contain implied 
subscripted subscripts and vectorization is inhibited. 
Nevertheless, the solution of the equations typically 
occupies less than 15% of the total central processor 
time of the restrained least-squares calculation (see 
Table 1). Table 2 shows the progress of the Gauss- 
Seidel iterations during a cycle of refinement of 
glucagon, which is a polypeptide of 29 residues and 
crystallizes in space group P213 (Sasaki, Dockerill, 
Adamiak, Tickle & Blundell, 1975). 

The precision required in the solution of the normal 
equations need only be sufficient to ensure that errors 

Fig. 2. Electron densi ty  (2[Fo[-IFcD in the region o f  His  119 in 
bovine  pancrea t i c  r ibonuclease  A. Occupanc ies  o f  sites A and  
B are 0.8 and  0.2 respectively.  C o n t o u r  level is 0.6 e ~ - 3 .  
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in the solution vector are small compared with Taylor- 
series truncation errors inherent in the Gauss- 
Newton theory described in Appendix I. R E S T R A I N  
terminates the iterations when 

l i sp ' -  8p'-111/II 8p'll < s, 
where superscripts denote iteration numbers and s 
may be chosen by the user but defaults to 0.02. Values 
of s as high as 0.2 can still enable satisfactory progress 
to be made in the earlier stages of refinement. 

Owing to the Taylor-series approximation referred 
to above the block-diagonal approximation used for 
structure-factor derivatives, the solution vector 6p 
obtained from the Gauss-Seidel iterations does not 
in general determine the minimum of M(p). A better 
approximation may be economically determined by 
accepting the direction of 8p and determining the 
magnitude of the vector by recalculating the function 
M for three parameter vectors p, p+  asp  and p+ 
2aSp, Where a is a partial shift factor supplied by 
the user and typically is in the range 0.2 to 0.4. The 
optimum shift vector is found by fitting a quadratic 
curve through the three function values and using the 
shift factor corresponding to the minimum point. In 
order to shorten computing time the calculation of 
M for shift-factor determination is carded out by 
sampling the terms in the summation. Typically onl), 
one tenth of the terms are re-evaluated. At 1.5 A 
resolution optimum shift factors are typically in the 
range 0.8 to 1.0 but at lower resolution (2.5/~) values 
in the range 0.4 to 0-8 are encountered owing to the 
more serious neglect of off-diagonal terms in the 
normal matrix. 

Vector processing 

A vector processor differs from a conventional serial 
processor such as an IBM 3081 or a VAX 11/750 by 
its ability to process a set of operands with one 
instruction. The Fortran statements 

DO 10 I =  1,1000 

10 A(I) = SC*B(I) 

constitute a loop, which on a serial processor requires 
the execution of branch on-condition instructions in 
addition to the floating-point multiplications. On a 
Cray-1 computer, segments of the arrays 64 elements 
long can be processed by one instruction. In general, 
vector processors are well suited to algorithms that 
call for identical operations to be carded out on the 
elements of an array. An essential condition for vec- 
torization is usually that the addresses of successive 
array elements accessed must increase in arithmetic 
progression and the Cray-1 computer currently 
imposes the restriction that only the innermost DO 
loops of the program may be vectorized by the Fortran 
compiler. 

The computation of structure factors and their 
derivatives is by far the most expensive part of the 
calculation on a scalar machine. Fortunately a tradi- 
tional algorithm for these calculations (Rollett, 1965) 
is very amenable to vectorization. For each reflection 
all loops over the number of atoms make use of the 
vector registers of the Cray-1. The scattering factors 
are calculated from a four-Gaussian approximation 
and it is interesting to note that this takes approxi- 
mately the same processor time as consulting a look- 
up table, which cannot be vectorized. This is illus- 
trated in Table 1 where timings for the various stages 
of the refinement process are given with and without 
vectorization. Fortunately, as this table shows, the 
greatest gains in speed with vectorization are in the 
structure-factor routine. 

The vectorization is optimized by: 
(a) using few loops with long code blocks in pref- 

erence to many short code loops; 
(b) putting long loops inside short loops since only 

innermost loops are vectorized on the Cray-1; 
(c) removing any code (e.g. IF statements, I /O 

requests) from loops where it would inhibit vectoriz- 
ation; 

(d) storing data that occur with irregular address 
increments into temporary arrays with regular address 
increments; 

(e) replacing look-up tables for any functions by 
built-in Cray-1 functions that are able to use the vector 
registers. 

The latter changes increase both the speed and 
precision because the use of look-up tables involves 
irregular addressing of arrays, and more approximate 
function evaluation. Gains in speed of over 20% were 
achieved by replacing look-up tables with internal 
Cray-1 trigonometric functions in the structure-factor 
calculation. 

A second way of speeding up the structure-factor 
calculations involves the use of the product forms of 
the geometric structure-factor formulae. These 
expressions are space-group specific and involve the 
factorization of the temperature-factor expression 
and hence are only suited to isotropic refinement. 
However, the use of such a code on the Cray-1 usually 
speeds up the calculation by less than a factor of two. 
We have observed larger gains in speed using space- 
group-specific subroutines on scalar machines. 

The scope for vectorization in the energy part of 
the calculation and in the solution of normal 
equations is more limited because these processes 
inherently involve much irregular addressing. 

Discussion 

It is interesting to compare the refinement method 
implemented in R E S T R A I N  with that used by other 
workers. Structure-amplitude terms supplemented by 
distance restraints have been used in several other 
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computer programs (Sussman et al., 1977; Hendrick- 
son & Konnert, 1980) for refinement of 
macromolecules. The use of isomorphous phases in 
reciprocal-space refinement is related to the real- 
space refinement method proposed by Diamond 
(1971). In the latter method the difference between 
the observed electron density (po) and that calculated 
from trial atomic positions (pc) is minimized. This 
least-squares problem may be reformulated in 
reciprocal space: 

(Po- p¢)Ed V= (2/V) E IFo - Fcl 2. 

This sum of squares may be expressed in terms of 
the real and imaginary components of the structure 
factors: 

~, [Fo - Fcl 2 = ~ ( A o  - A c )  2 h- ~, ( Bo - Bc)  2. 

It will be noted that real-space refinement gives equal 
weight to each squared term and also assumes zero 
correlation between the errors in the A and B parts 
of the structure factor. The formulation in 
R E S T R A I N  allows different squared terms but 
assumes zero correlation between the errors associ- 
ated with amplitudes and phases. Ignoring correlation 
in both cases can only be justified by computational 
convenience and the difficulty in assessing the magni- 
tude of the effect. 

The large errors typically associated with isomor- 
phous phases particularly at higher Bragg angles limit 
their use to the earlier stages of structure refinement. 
Our own experience of the use of phases between 
resolutions of 2.6 and 4.0 A have shown that success- 
ful refinement is highly dependent on correct phase 
weighting, which is more difficult to achieve than 
correct structure-amplitude weighting owing to the 
cyclic nature of the phase data. Constrained refine- 
ment of atomic positions can correct larger positional 
errors and phases may contribute more to such a 
refinement at low resolution where phases tend to 
have higher figures of merit. 

Refinement of free anisotropic displacement par- 
ameters can only be undertaken when diffraction data 
up to a resolution approaching 1/~ are available. Yet 
the observed displacements may be highly anisotropic 
(Glover, Haneef, Pitts, Wood, Moss, Tickle & Blun- 
dell, 1983), In such cases the use of the rigid-body 
TLS option provides a particularly suitable method 
of refining side chains containing ring systems and 
other rigid groups. The mean-square amplitudes of 
vibration of intramolecular distances in a benzene 
ring are about 0.003 A 2 (Kimuro & Kubo, 1960). This 
is at least an order of magnitude smaller than the 
mean-square displacements observed in protein struc- 
tures. The rigid-body approximation is therefore a 
valid approximation for such rings and requires only 
a modest increase in the number of parameters 
refined. A TLS refinement of the eight atoms of a 

tyrosine side chain requires 20 TLS parameters 
whereas a free anisotropic refinement requires 48 
mean-square displacement parameters. Pawley 
(1970) has discussed the refinement of TLS param- 
eters in small-molecule structures where the rigid- 
body displacements are much smaller than in 
macromolecules. It is interesting to consider the range 
of applicability of the TLS approximation in 
macromolecular refinement. Rigid-group vibrations 
and some internal modes such as the BEg ring- 
puckering vibrations of the carbon atoms of a benzene 
ring can be represented exactly by TLS tensors. The 
planar-ring side groups of residues such as histidine, 
phenylalanine, tyrosine, tryptophan and the bases of 
nucleic acids are clearly candidates for anisotropic 
rigid-body treatment. Tetrahedral moieties such as 
occur in isoleucine, leucine, threonine and valine as 
well as smaller planar groups such as carboxyl, amide 
or guanidinium can also be refined in this way but 
the economy in parameters is smaller than with larger 
groups. Interpretation of results must take into 
account the fact that TLS components contain a linear 
dependency where a group consists of five or fewer 
coplanar atoms (Ibers & Hamilton, 1974). 

The magnitude of librational disorder present in 
protein structures has a significant effect on calculated 
interatomic distances and this is particularly relevant 
in geometrically restrained refinements. Our recent 
TLS refinements of avian pancreatic polypeptide and 
ribonuclease (unpublished results) at resolutions of 
0.98 and 1.45 ~ respectiyely have shown distance 
corrections of up to 0.02 A in the well ordered side- 
chain rings and up to 0.06 ]k in an active-site sulphate 
ion. Libration effects in main chains are less sig- 
nificant. However, the extensive disorder often shown 
by side chains of residues such as lysine and arginine 
on the surface of protein molecules could call into 
question the validity of applying distance restraints 
to such groups unless the anharmonic and anisotropic 
disorder can be correctly modelled. Unfortunately 
the diffraction information needed for such modelling 
is in the diffuse scattering rather than in the Bragg 
reflections. It is hoped that molecular-dynamics simu- 
lations may provide a basis for improved least-squares 
models (Kuriyan, Karplus, Levy & Petsko, 1984). 

The use of the Gauss-Seidel method for solving 
the linear equations arising from the minimization 
process has also been employed by Hoard & Nord- 
man (1979) in structure refinement. Nordman, 
however, updates the structure factors during the 
Gauss-Seidel iterations. The method of conjugate 
gradients has been employed for solving systems of 
linear equations with large sparse matrices (Hen- 
drickson & Konnert, 1980). The time requirements of 
these two techniques are similar (Ralston, 1965) and 
as the solution of the equations occupies less than 
20% of the computer time for a refinement cycle, it 
is difficult to see a clear advantage in either method. 
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The use of the Cray-1 vector processor allows a 
significant increase in speed owing to the highly vec- 
torizable classical algorithms for the computation of 
structure factors and their derivatives. Fortunately it 
is just these algorithms that consume most of the . 
processor time when only scalar processing is 
employed. 

APPENDIX II 

The condition for a set of atoms to lie in a plane 

Consider a set of atoms with position vectors with 
respect to their centroid represented by column 
matrices xi. Let n be a column matrix representing a 
unit vector perpendicular to the plane and let primed 
symbols represent row matrices. Then for all i 

Hence 
n'xi = O. 

0 = ~ (n 'x i )  2 

= n ' ~  (xixT)n 
= n'Vn, 

where the summations are taken over the atoms in 
the plane and V is the product-moment matrix. Thus, 
n'Vn can be expressed as a sum of squares that will 
equal zero when the atoms are coplanar. The matrix 
is therefore positive semidefinite and its determinant 
is zero. 

To show that a zero determinant of the matrix of 
product moments is a sufficient condition for planar- 
ity, the steps in the above argument may be reversed. 

The first and second derivatives of V required in 
the Newton method are computed by a forward differ- 
ence technique. If V (x, y, z) is the determinant when 
a given atom in the plane is at (x, y, z) then first and 
second derivatives are calculated from expressions 
such as 

o v /ax=Elv l (x+ 8x, y , z ) - l v  (x, y, z)3/Sx 

and 

o 2 V/oxoy=[  v (x+Sx, y+Sy, z)- lVl(x+Sx, y, z) 

- I v  (x, y+ By, z)+ I Vl(x, y, z)]/SxSy. 

The increments 8x and 8y are 0.01/~.  It should be 
noted that each recalculation o f ] V  requires a re- 
evaluation of the centroid of the planar group. 
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